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Porous silicon formation and electropolishing
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Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low
and to electropolishing for high applied current. The transition between pore formation and polishing is
accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at
the interface between the semiconductor and the electrolyte is determined by the local current density. We
model the transport of reactants and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface are summarized in the law of
mass-action-type boundary conditions for the transport equations at the interface. We investigate the linear
stability of a planar and flat interface. Upon increasing the current density the stability flips either through a
change of the valence of the dissolution reaction or by a nonlinear boundary condition at the interface.
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I. INTRODUCTION

Porous silicon was discovered in the 1950s trying to el
tropolish silicon in hydrofluoric acid@1,2#. For low current
densities and high electrolyte concentrations, silicon is
electropolished but pores are formed. Increasing the cur
density over a threshold value, which decreases with
electrolyte concentration, results in electropolishing. In
beginning of the 1990s visible luminescence at room te
perature was discovered@3,4#. The possibility to produce op
toelectronic devices out of porous silicon started enorm
research activity. Meanwhile many applications for poro
silicon are in development. Most of these applications
based on the morphology of porous silicon; for a review
@5#.

Porous silicon is formed by anodic dissolution of silico
in hydrofluoric acid. The silicon surface is in contact with t
electrolyte, usually in a Teflon cell. Through the extern
potential an electric current is maintained across the cell
flows from the semiconductor to the acid. Defect electro
~i.e., holes! from the semiconductor and HF~or F2 ions!
from the electrolyte combine at the fluid-semiconductor
terface and dissolve silicon through an electrochemical re
tion. The morphology of the unsolved silicon depends on
current. In the electropolishing phase the silicon surface
etched layer by layer and remains essentially flat, wherea
the porous silicon phase many holes are formed of a
ranging from a few nanometers to microns. Porosities
over 95% relative to crystalline silicon can be reached.

Despite its importance, there is little theoretical und
standing of how porous silicon is formed; for a review s
@6#. Even the basic issue why there is a transition from
rous silicon formation to electropolishing is unresolved. T
reasons are rather obvious, when one compares with o
pattern formation processes like dendrites, viscous finger
and colloidal aggregation. As in these systems, we hav
understand the dynamics of a moving interface, here betw
a semiconductor and an acid. At the interface silicon is d
1063-651X/2001/64~3!/031604~10!/$20.00 64 0316
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solved through an electrochemical reaction. Thus in cont
to the better understood systems mentioned above, we
to consider the transport of several species in the presenc
an electric field. Moreover, since the species feedback
the electrical field and react with each other, the transp
equations become nonlinear.

One approach to model the dissolution process is b
stochastic growth model, i.e. growth of the fluid into th
semiconductor; see, for example,@7,8#. These models are
inspired by the diffusion limited aggregation~DLA ! model.
While, in principle, such a model is on the atomic sca
because of numerical limitations in practice, larger spa
units are used. By suitable adjustments of model parame
structures qualitatively similar to porous silicon can be p
duced, but the quantitative connection of model parame
to physical parameters is lost and, in some cases, the co
ening introduces a new length scale into the system that
scures the physics.

A second approach, starting at much larger length sca
is to use a continuum description for both the motion of t
interface and the ionic and electronic transport; see, e
@9–12#. These models include a depletion or passivat
layer at the interface in a phenomenological way and ass
anad hocsurface tension to stabilize against small pertur
tions and to provide a length scale that can be compared
the pore formation. However, surface tension can only aff
length scales of the order of the micropore diameter, i
nanometers. The above-mentioned models are not valid
these small scales since the mean free path, quantum eff
and the electrical double layer in the electrolyte would ha
to be taken into account.

We will use here also a description through continuu
equations, but take care to model the actual chemistry
kinetics at the interface and the physical transport mec
nisms. This results in a somewhat complicated set of evo
tion equations and we have to be satisfied with the m
modest goal to understand whether continuum equation
general are able to predict the transition from electropoli
©2001 The American Physical Society04-1
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ing to pore formation. As a benchmark for the transition
use the dispersion relation as obtained from a linear stab
analysis of the flat interface moving at a constant velocity
the dispersion switches from unstable to stable, we inter
this as the transition from pore formation to polishing.
course, if the continuum equations contain the information
the pore structure at all, it will not be unraveled in such
stability analysis.

In Sec. II we discuss the full nonlinear transport equatio
and their boundary conditions at the interface. We deriv
simplified transport model that covers essential features
electrochemical etching of semiconductors and calculate
stability of the dissolution front in linear order in Sec. II
Our results are summarized in Sec. IV.

II. MODELING ELECTROCHEMICAL ETCHING

A. Electrochemistry

While anodizing silicon in hydrofluoric acid, silicon i
dissolved in an electrochemical reaction. The detailed re
tion mechanism is still a topic of actual research. Howev
during pore formation hydrogen evolution is observ
whereas no hydrogen is formed during electropolishing. T
valence n of the chemical reaction~the number of unit
charges needed to pass through the interface to dissolve
silicon atom! differs in both cases. During pore formation th
dissolution steps for a single silicon atom add up to@13#

Si16HF1h1
SiF6
221H214H11e2. ~1!

For each Si atom two positive charges are needed and
valence isn52. To be more detailed, a defect electron~i.e.,
hole! h1 is consumed and an electron is injected into
semiconductor. Two more charges are required to change
oxidation state of Si from 0 in the crystal to 41 in the SiF6

22

ion in the solution. They originate from the reduction of t
H atoms into two HF molecules, which leads to the prod
tion of H2. In the electrolyte only neutral molecules are co
sumed and a double negatively charged ion and four p
tively charged ions diffuse into the bulk, so their sum is ju
two positive charges.

For electropolishing the sum reaction is@14#

Si16HF14h1
SiF6
2216H1. ~2!

Since four holes are consumed the valence isn54. All
charges needed to oxidize the silicon atom are delivered
the electrical current and there is no hydrogen formation

In both cases, pore formation and electropolishing,
local silicon dissolution rate is proportional to the local ele
trical current density component normal to the interface,
noted byj' . Thus the local interface velocityw is

w52F j' , ~3!

whereF is the volume of silicon per unit area dissolved by
unit charge. This number is inversely proportional to the
lencen of the chemical reaction. The valence doubles as
current density is increased over the threshold value for e
tropolishing@14#.
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B. Transport equations

The local current density is determined by the transpor
reactants and reaction products in the semiconductor and
electrolyte as well as by the reaction kinetics. Modeling t
transport and the interface reaction depends strongly on
considered length scale. Inn-doped silicon, the pore spacin
is typically some microns whereas inp-silicon nanometer
sized pores are formed.

The shorter the considered length scale the more deta
the model has to be. The mean free path of charge carrie
the semiconductor is of the order of some 10 nm. Transp
on this length scale can be described by Boltzmann eq
tions, but their nonlocality makes them difficult to analy
@15#.

On the nanometer scale, quantum effects start to pla
role @4# and the electrical double layer at the interface in t
electrolyte, i.e., the Helmholtz layer, has to be taken in
account@16#. At this level, details about the electrochemic
reaction pathway have to be fed into electronic structure
culations to determine the boundary conditions. Such
tailed knowledge is not available and the presence of an e
trolyte makes the calculations even more complicated.

To avoid these difficulties we restrict our model to leng
scales, large as compared to the mean free path in the s
conductor, i.e., larger than 100 nm. Then, the transport in
semiconductor and in the electrolyte can be described
drift and diffusion, i.e., by Nernst-Planck equations. The c
rent density of electrons,jn , and holes,j p , is given by

jn5eDn“n1e2mnnE, ~4!

j p52eDp“p1e2mnpE,

whereDn/p is the diffusion constant,mn/p the mobility,e the
elementary charge, andE the electric field. The electron an
hole concentrationsn andp determine the local charge den
sity and thus the electric field via the Poisson equation

“•E5
e

eSi
~p2n1N!, ~5!

with N the density of ionized dopant atoms andeSi the di-
electric constant of silicon. Forp-doped silicon,N is negative
and forn-doped silicon is positive. Since the electric field
determined by the charge carrier concentration, the prod
nE andpE in Eq. ~4! represent nonlinearities. Another non
linearity appears due to production and recombination
electron hole pairs in the continuity equation

“• jn5
e

t

pn2peqneq

peq1neq
52“• j p , ~6!

wheret is the lifetime of the charge carriers andneq andpeq
are the equilibrium electron and hole concentration, resp
tively @17#. We make the quasistatic approximation negle
ing the time derivative of the concentration fields. This
justified if the relaxation time for any field involved in th
dissolution process is much faster than the interfa
movement. The electrical charge is conserved due
4-2
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POROUS SILICON FORMATION AND ELECTROPOLISHING PHYSICAL REVIEW E64 031604
“• j5“•( jn1 j p)50. The source term in Eq.~6! is derived
from a law of mass action for the recombination react
e21h1
0.

If convection is negligible, the transport of molecules a
ions in the electrolyte can be described analogously. HF,2 ,
H1, and SiF6

22 have to be considered as well as fluoride F2

and OH2. For each componentX a Nernst-Planck equatio
gives the particle current density, denoted byiX ~in contrast
to the electric current densityj ),

iX52DX“CX1qXmX CX E, ~7!

with the particle’s chargeqx . The reactions HF
H11F2

and H2O
H11OH2 have to be taken into account i
source terms for the continuity equations of the correspo
ing current densities

“• iOH25
1

tH2O

COH2 CH12Kw

CH2O
2

,

“• iH152
1

tH2O

COH2 CH12Kw

CH2O
2

2
1

tHF

CF2 CH1

CHF
2KHF

CH2O
,

~8!

“• iF25
1

tHF

CF2 CH1

CHF
2KHF

CH2O
.

The equilibrium constants for the water dissociation and
HF hydration areKw510214 mol2/l 2 andKHF53.531024

mol/l @19#. In Eq.~8! the water concentration, considered
a natural constant of unit mol/l , has been added to corre
the units@18#. In the electrolyte the Poisson equation is

“•E5
e

eEle
~CH12CF22COH222CSiF

6
22!, ~9!

with the electrolyte’s dielectric constanteEle. As in the semi-
conductor, the law of mass action-type source terms and
coupling of the ion concentrations to the electric field rep
sent nonlinearities that make the transport equations con
erably more complicated as compared to equations use
describe directed solidification or viscous fingering for e
ample @20#. Moreover, especially in the description of th
transport in the electrolyte, there are poorly understood
tures. First of all, there are many other ions in the electro
that do not take part in the dissolution reaction directly b
affect the electric field and the transport properties. Seco
during pore formation, silicon enters the solution as HS3

and reacts to SiF6
22 in the solution@13#. The reaction rate for

this process is not known and it is possible that a consid
able amount of HSiF3 is present near the interface in th
solution. Third, hydrogen bubble evolution is not modeled
well as convection. Nevertheless, we propose to proc
with the nonlinear transport Eqs.~4!–~9!.
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C. Boundary conditions

At the interface between the semiconductor and the e
trolyte, the dissolution reaction Eqs.~1! and ~2! have to be
taken into account. In both equations, the electric curr
density component normal to the interface~denoted by the
subscript') is given by the difference of the forward an
backward reaction rate. In a law of mass action type appro
mation, these rates are given by the concentration produc
the reactants and the reaction products, respectively. Thu
the pore formation reaction we obtain

j'52Gpore~CHF
6 p2hporeCSiF

6
22CH2

CH1
4 n!, ~10!

with the reaction rateGpore. The parameterhpore is a measure
for the equilibrium concentration product for this reactio
The current density is taken positive for currents flowi
from the electrolyte into the semiconductor. For reaction E
~2! we obtain correspondingly

j'52Gpolish~CHF
6 p42hpolishCSiF

6
22CH1

6
!. ~11!

In both cases, the concentration of crystalline silicon is
constant summarized in the parametersG and h. Surface
tension could be accounted for by a curvature dependenc
h but cannot play a role at the length scales discussed h
Obviously, these boundary conditions are highly nonline
The particle current density components normal to the in
face represent the stoichiometry of the corresponding che
cal reaction. In case of Eq.~1! this is

4i HF'56i H1' ,

j p'5 j n' ,

1

e
j p'5 i H2'

, ~12!

4

e
j p'5 i H1' ,

1

e
j p'5 i SiF

6
22' ,

and for Eq.~2!

i HF'5 i H1' ,

1

e
j p'54i SiF

6
22' , ~13!

6

e
j p'54i H1' .

Thus the current densities of all species taking part in
reaction are determined by fixing the current density of o
of them. The normal current density component of spec
that do not take part in the dissolution reaction is zero.

The inner Helmholtz layer in the electrolyte is not d
scribed by the ion transport equations. This layer has a v
4-3
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MARKUS RAUSCHER AND HERBERT SPOHN PHYSICAL REVIEW E64 031604
high capacity as compared to the diffuse part of the electr
double layer in the electrolyte and the depletion layer in
semiconductor@21#. For this reason, the main potential dro
across the interface occurs in the depletion layer in the se
conductor. Thus the electrical potentialV (E52“V) is con-
tinuous at the interface in a first approximation. For the el
tric field boundary conditions as known from electrostat
are used, i.e., the tangential component ofE and the normal
component ofeE are continuous across the interface.

We do not specify the boundary conditions at the cath
or at the backside of the wafer, since no experimental e
dence is reported for an influence of the cathode or the w
backside on the dissolution process. Outside the deple
layer the semiconductor is electrically neutral and can
treated as an Ohmic conductor. The electron and hole c
centrations have equilibrium values. In the electrolyte, th
is more variety. Due to the consumption of reactants and
accumulation of reaction products, the composition of
electrolyte changes in time. However, usually the electro
is stirred. In a large container, this means, that in a cer
distance from the anode, the electrolyte is homogeneous
proximately in equilibrium, and has a composition th
hardly changes in time. Thus, a reasonable boundary co
tion for the model equations is to fix the concentration of
electrolyte components at a certain distance from the in
face to the equilibrium values. This distance depen
strongly on stirring and the current density and must rem
as a free parameter. Such kind of boundary condition
very crude approximation, since convection certainly play
role even in the diffusion layer, i.e., the region near the
terface where the electrolyte is not homogeneous due to
applied current. To include convection in the model is
principle possible. On the scale of the pores convect
should not play a role because of the high viscosity of
drofluoric acid.

The model described in this section should be reason
close to the physics and chemistry of the etching proces
length scales, large compared to the mean free path in
semiconductor. We have to deal with nonlinear transp
equations and boundary conditions. However, the two ca
i.e., pore formation and electropolishing, are actually trea
as two separate models. One would like to have a model
decides itself which reaction pathway~i.e., which law of
mass action boundary condition! to take, depending on con
centrations or current densities at the interface. Combin
the two boundary conditions Eq.~10! and Eq.~11! to

j'52Gpore~CHF
6 p2hporeCSiF

6
22CH2

CH1
4 n!

2Gpolish~CHF
6 p42hpolishCSiF

6
22CH1

6
! ~14!

gives the correct normal current density. But the stoichio
etry equations~12! and ~13! have to be included, too. Fo
that one needs to know the local fraction of silicon ato
that are dissolved by the pore reaction~1! and the polishing
reaction~2!, respectively.

Beside this constraint, analyzing the above develo
model ~analytically or numerically! would be a really de-
manding venture. The parameter space is large and e
03160
al
e

i-

-
s

e
i-
er
on
e
n-
e
e

e
e
in
p-

t
di-
e
r-
s
in
a
a
-
he

n
-

ly
on
he
rt
s,
d
at

g

-

s

d

en

though many parameters have a direct physical interpr
tion, experimental values are not available to fix them.

Our goal is to study the transition from pore formation
electropolishing, in particular to investigate the mechani
that can lead to such a transition. Therefore we study a s
plified model that captures the key features of the ab
description of electrochemical dissolution of silicon, name
the interplay of more than one field determining the interfa
motion, a change of valence of the dissolution reaction,
law of mass-action-type boundary condition.

III. LINEAR STABILITY ANALYSIS

A. Simplified model

1. Model equations

To have a tractable model and to gain some experience
have to simplify and consider only one field,CE , in the
electrolyte and one field,CS , in the semiconductor. Thes
fields could be either the concentrations of one of the spe
in the electrochemical reaction, or the electrical potential,
a linear combination of fields as, e.g., the total amount
fluor per unit volume, which is the sumCF21CHF. For sim-
plicity, we will work with concentration fields in the follow-
ing. To account for the interaction between the various fie
we include source terms in the continuity equations t
drive the fields to their equilibrium valuesCE

eq and CS
eq in

the electrolyte and the semiconductor, respectively. We
sume only diffusive transport to keep the transport equati
linear, which allows the stability analysis of a planar inte
face to be performed analytically. Nonlinear transport eq
tions would lead to linearized equations for a flat and pla
interface with nonconstant coefficients. The particle curr
densities in the electrolyte and the semiconductor,iE and iS ,
respectively, are assumed to be given by

iE52DE“CE and iS52DS“CS , ~15!

with the diffusion constantsDE and DS . The continuity
equations are then

“• iE/S52DE/S“
2CE/S52

1

tE/S
~CE/S2CE/S

eq !, ~16!

with the time constantstE andtS for the electrolyte and the
semiconductor, respectively@23#.

At the moving interfaceI5$(x,y,z)uz5h(x,y;t)% we as-
sume a law of mass-action-type boundary condition for
reaction

CE1CS
0, ~17!

similar to Eq.~10! or ~11!. The setup is illustrated in Fig. 1
Since we want to perform a linear stability analysis of a fl
and planar interface the restriction to single valued interfa
is no real limitation for our analysis. Another choice of th
interface reaction would beCE
CS , leading to linear law
of mass-type boundary conditions, see@22#. This type of
boundary conditions does not lead to the desired proper
The law of mass action for Eq.~17! is
4-4
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i S'uI52G~CSCEuI2h! ~18!

and the stoichiometry is represented by

i S'uI52 i E'uI . ~19!

At some distancedE and dS from the interfaceI, either
the current densityiE/S or the fieldCE/S can be fixed. How-
ever, at least at one side the field has to be fixed to elimin
all gauge freedom. We will fix the current density in th
semiconductor and the field in the electrolyte, i.e.,i Suz5ds

5I and CEuz52dE
5CdE

. The normal velocityw of the in-
terface is given by the normal current density

w52Fi S'uI . ~20!

With the choice of sign in the above equation and interfa
reaction~17! the particle current in the semiconductor has
flow to the interface to dissolve the silicon. This means t
CS has to be the hole concentration.

A change in the valence of the dissolution reaction c
then be modeled by a current dependentF( i S'), which is
inversely proportional to the valencen}1/F, i.e., the number
of particles CE/S needed to dissolve a certain amount
semiconductor material. Geometric considerations lead to
growth rate of the height functionh(x,y;t)

ḣ~x,y;t !52F~ i S'!S 2“h

1 D • iSuI , ~21!

whereḣ denotes the time derivative ofh.

2. Linearized theory

For a flat and planar interfaceh0(t), the transport equa
tions ~16! become ordinary linear differential equations wi
constant coefficients in the independent variablez. The solu-
tions, which can be obtained analytically, depend on
boundary conditions atz5dE and z5dS and will be dis-
cussed later. They are linear combinations of exponential
in the limiting casetE/S→`, affine functions ofz.

Now we assume a small perturbationdh(x,y;t) of a cer-
tain wavelengthl52p/k of the interface and expand th
fields ~and correspondingly the current densities! up to first
order indh,

FIG. 1. Sketch of the simplified model. The semiconductor
above the interfaceh(x,y) and the electrolyte below. Particle
move to the interface from both sides and react with each ot
dissolving the semiconductor.
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CE/S5CE/S
0 1dCE/S1O~dh2!, ~22!

iE/S5 iE/S
0 1d iE/S1O~dh2!. ~23!

From Eq.~21! the time evolution of the perturbation can b
derived

~24!

with the prime abbreviating the derivative with respect toz.
The last term (*) is independent of the shape of the per
bationdh. In terms of the valencen it can be written as

~* !5S 12 i S
0
'

d ln n

diS'
U

i
S
0
'

D . ~25!

The growth speed of the perturbationdh is thus propor-
tional todh and Eq.~24! can be written asdḣ5v(k)dh with
the dispersion relationv(k). Perturbations withv(k).0
will grow exponentially and are called unstable, where
modes withv(k),0 are damped and stable.

From the continuity equations~16! it follows

2DE/S~dCE/S9 2k2dCE/S!52
1

tE/S
dCE , ~26!

by comparing powers ofdh. The first order terms in the
boundary condition Eqs.~18! and ~19! for the perturbed
fields dCE/S are

~d i S'1dhiS
0
'8 !uI52G~~CS

01CS
eq!~dCE1dhCE

08!

1~CE
01CE

eq!~dCS1dhCS
08!!uI ,

~27!

~d i S'1dhiS
0
'8 !uI52~d i E'1dhiE

0
'8 !uI . ~28!

At the lines z5dE and z5dS the fields satisfy Dirichlet
boundary conditions.

B. Change of valence

Independent of the solution of the first order equati
~26!, the third term (*) in the right-hand side of the tim
evolution equation~24! changes sign with the current densi
i S'

0 uI passing through the interface ifF ~or the valencen)

varies strongly enough. A change of sign of this te
changes the sign ofv(k) for all k, making stable modes
unstable and vice versa. A similar mechanism has been
posed to explain the stability of the macropore front@24#.

A sharp change of the valence of the electrochemical
solution reaction from 2 to 4 electrons per Si atom at
critical current density for electropolishing has been fou
experimentally. Estimating the valence change from~@14#, p.
39, Fig. 3.8! leads to i S'

0 (dlnn/diS'
)'1.18, i.e., enough to

change the sign ofv(k).
This change of sign leads only to a stabilization of t

interface if there have been no stable modes for lower cur

r,
4-5
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densities, since these would become unstable. Moreover
analysis cannot explain, why the interface remains stable
high current densities, i.e., for electropolishing, where
valence does not change anymore.

C. Transport and boundary conditions

The linearized interface growth model as described
Sec. III A can in principle be solved analytically for all type
of boundary conditions far away from the interface. Amo
the many possibilities we discuss some instructive limit
cases and infer the general behavior from them. In this s
tion we assume for simplicity thatF, and thus the valencen,
is independent of the current density.

1. Infinite lifetime—double Laplacian growth

The simplest case is the limit of infinite lifetimetE/S
→`. Both fields,CE and CS , solve the Laplace equatio
and this simplified model is a straight forward extension
the well studied Laplacian growth model@20#. The solutions
for the planar interface are then

CS
052

I

DS
z1

DE~2I 1Gh!

G~ IdE1DECdE
!
,

CE
05

I

DE
~z1dE!1CdE

. ~29!

After solving the first order equations~26! one obtains for
the dispersion relation

v~k!5

FIkS CE
0~0!2

DS

DE
CS

0~0! D
CE

0~0!cothkdS1
DS

DE
CS

0~0!tanhkdE1
DS

G
k

.

~30!

For smallk, the sign ofv(k) is basically determined by th
ratio of the diffusivities and the current direction and go
quadratically to zero

v~k!;FI S DSCS
0~0!

DECE
0~0!

21D dEk21O~k4!. ~31!

In the limit of dE→` the dispersion relation goes linearly
zero fork→0 with the same prefactor as above~i.e., substi-
tute dEk2 by k).

For largek, the dispersion relation saturates at

v~k!;FIGS DSCS
0~0!

DECE
0~0!

21D CE
0~0!

DS
1OS 1

kD . ~32!

Again the term @DSCS
0(0)/DECE

0(0)21# determines the
sign. ForDE@DS the dispersion relation is positive for allk
but changes sign asDE!DS . In other words, the interface i
unstable if the front propagates into the medium with
much lower diffusion constant. The ratio of diffusion co
stants at which the sign changes is determined by the o
03160
ur
or
e

n

c-

f

s

e

er

parameters, e.g., byDE /DS51/50 in the example in Fig. 2
The reason for the dependence of the stability on the di
sion constant is the following. Reactants from the semic
ductor ~e.g., holes! reach the pore tips first. The diffusiv
transport in the semiconductor thus destabilizes the interf
On the other hand, the reactants in the electrolyte reach
pore walls easier than the tips and thus stabilize the interf
If the diffusion in the semiconductor is much slower than
the electrolyte, then the growth speed is solely determined
the transport in the semiconductor and the interface is
stable. This is the standard DLA scenario@20#. In the oppo-
site case, the transport in the electrolyte determines the l
dissolution rate and the interface is linearly stable. This a
DLA limit has been studied in@25#.

The term@DSCS
0(0)/DECE

0(0)21# also has two zeros a
a function ofI since the numerator is a quadratic polynom
in I. For DE@DS and a small negativeI the dispersion rela-
tion is positive for allk and changes sign at the first zeroI 1.
Figure 3 illustrates this property ofv(k). This means that the
law of mass action boundary conditions provide a mec

FIG. 2. Dispersion relation in case of infinite lifetime and f
several values ofDS . Note the sign change atDS550. The other
parameters are set toG51, DE51, dE510, dS520, h51, I
521, andCdE

520.

FIG. 3. Dispersion relation in case of infinite lifetime and f
various current densities. Note the sign change betweenI 521.8
and I 521.95. The other parameters areG51, DE51, DS50.5,
dE510, dS520, h51, andCdE

520.
4-6
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nism to stabilize an interface simply by changing the curr
density. The second zeroI 2 is smaller than I 0

52DECdE
/dE whereCE

0(0) changes sign. This leads to a
unphysical pole in the dispersion relation. Since we interp
the fieldsCE/S as concentrations,CE

0(0) has to be positive
The finite distancesdE/S have basically the effect that the

provide an infrared cutoff changing the dispersion relat
from linearly to quadratically fork→0 ~besides changing th
numerical values ofCE/S

0 ). Therefore we setdE→` for the
discussion of the model with finite lifetimes in the electr
lyte.

2. Helmholtz equation in the electrolyte

To study the effect of a finite lifetime for the diffusin
species, we taketE finite while keepingtS infinite. The
choice is motivated by the high background ion concen
n
tio
ig

c

ll

fo

he

ce
th

ur
er

03160
t

t

n

-

tions in the electrolyte that provide a buffer/reservoir for p
ticles. Since we setdE→`, equilibrium is the only choice
for the boundary condition in the electrolyte far away fro
the interface, i.e.,CE→CE

eq for z→2`. The solution for the
flat interface is then

CS
0~z!52

I

DS
z1

h2
I

G

I

DEkE
1DEkECE

eq

,

CE
0~z!5

I

DEkE
ekEz1CE

eq, ~33!

wherekE51/ADEtE is the reciprocal diffusion length. The
dispersion relation for this case is
v~k!52FIk

GS I

kE
1CE

eqDAkE
21k22DSDE

Gh2I

I

kE
1CE

eq

~AkE
21k22kE!

FDEDSk1GS I

kE
1CE

eqD cothkdGAkE
21k21DS

Gh2I

I

kE
1CE

eq

k

. ~34!

For smallk, the sign of the dispersion relation is determined by the sign of the current densityI,

v~k!;2FIdSk2. ~35!

For dS→`, v(k) goes linearly to zero with the same prefactor~i.e., substitutedSk2 by k).
The dispersion relation has a limit fork→`, which is a nonlinear function of the current densityI

v~k!;2FI
GI 21DSkE~DSkE12GCE

eq!I 1DSGkE
2~DSCE

eq22DSh!

DSDSkE~ I 1DEkECE
eq!

1OS 1

kD . ~36!
o
mi-
a-

he

tly.
The sign of this limiting value changes with the curre
density in the same way as the sign of the dispersion rela
in the previous section. The difference here is, that the s
for small values ofk is independently fixed by the sign ofI.
For I ,0, i.e., in the case of dissolution of the semicondu
tor, the dispersion relation is positive for smallk and positive
or negative for largek. The change in the stability of sma
wavelength modes is illustrated in Fig. 4.

The reason why the sign of the dispersion relation
small k is given by the current densityI only is, that in this
limit the electrolyte does not influence the stability of t
interface. The diffusion length 1/kE is a cutoff for the wave-
length up to which the electrolyte can stabilize the interfa
Longer wavelength perturbations are controlled only by
semiconductor.

3. Finite lifetime in semiconductor and electrolyte

The findings in the above section lead to the conject
that the stability of long wavelength perturbations is det
t
n
n

-

r

.
e

e
-

mined by the medium with the longer diffusion length. T
verify this we assume a semi-infinite electrolyte and se
conductor to keep formulas simple. With this type of equ
tion and boundary condition it is no longer possible to fix t
current densityI but by changing the ratio ofCE

eq/CS
eq the

current through the interface can be controlled indirec
The solutions for the flat interface are then

CS
0~z!5Be2kSz1CS

eq,

CE
0~z!5

DS

DEkE
BekEz1CE

eq, ~37!

whereB is the positive root of

05GDSkSB21@G~DSkSCS
eq1DEkECE

eq!1DSDEkSkE#B

1GDEkE~CS
eqCE

eq2h!. ~38!
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We write the dispersion relation in terms of the zero
order fields and current density at the interface and we
the abbreviationKE/S5AkE/S

2 1k2

v~k!52FG i S
0
'~0!

3
DEKE~KS2kS!CE

0~0!2DSKS~KE2kE!CS
0~0!

G@DEKECE
0~0!1DSKSCS

0~0!#1DEDSKEKS

.

~39!

For long wavelength, the dispersion relation is

v~k!;2FG i S
0
'~0!

3

1

2kEkS
@kE

2CE
0~0!2kS

2CS
0~0!#

G@DEkECE
0~0!1DSkSCS

0~0!#1DEDSkEkS

k2

1O~k4!. ~40!

If the semiconductor has a much longer diffusion leng
~i.e., kS!kE), the leading term is stable and it is unstable
the diffusion length in the electrolyte is much longer. T
value of the ratiokE /kS at which the sign changes depen
on the values of the other parameters. In the example of
5 the critical ratio iskE /kS51.83.

For largek→`, the dispersion relation has a limit

v~k!52FG i S
0
'~0!S CE

0~0!

DS
2

CS
0~0!

DE
D 1OS 1

kD . ~41!

Like in the previous sections, the stability of small sca
perturbations is determined by the ratio of diffusion co
stants. They are stable if the diffusivity in the semiconduc
is much larger than in the electrolyte and unstable ifDS
!DE . For the parameters in Fig. 6, the critical ratio of d
fusion constants isDS /DE50.90/2.0.

With the boundary conditions discussed in this secti
the current through the interface is controlled by the ra

FIG. 4. The dispersion relation in case of finite lifetime in t
electrolyte and infinite lifetime in the semiconductor for vario
current densities. The sign ofv(k) for k→` changes atI
523.38. The other parameters areF51, G51, DE510, DS51,
dS510, h51, kE51, andCE

eq51.
03160
se

f

g.

-
r

,
o

CS
eq/CE

eq. Like in the last section, short wavelength pertu
bations can be stabilized by increasing the current ove
certain threshold, i.e., increasing the ratio ofCS

eq/CE
eq. In the

example in Fig. 7 this value is 8.58/2.0.
Reducing the ratioCS

eq/CE
eq to the equilibrium value, i.e.,

for CS
eqCE

eq5h, the zero order current densityi S
0(0) vanishes

and the interface becomes marginally stable. Below t
value semiconductor material is deposited andv(k) changes
sign for allk. In Fig. 8 the growth rate of the flat interfaceḣ0
and the limit of the dispersion relation for largek are plotted
againstCS

eq for the same parameters as in Fig. 7, showing
two sign changes ofv(k→`). The sign change atCS

eq

50.5 is accompanied by a reversion of the growth direct
whereas atCS

eq58.58 only the stability properties change.

IV. DISCUSSION

Motivated by the discussion of electrochemical etching
silicon in HF solutions we developed a simplified model

FIG. 5. Dispersion relation in case of finite lifetime in semico
ductor and electrolyte for different values ofkE . Note that the sign
of v(k) for small k changes atkE51.83 but not the sign for large
k. The other parameters areF51, G51, DE52, DS51, kS51,
e51, CE

eq52, andCS
eq510.

FIG. 6. Dispersion relation in case of finite lifetime in semico
ductor and electrolyte for different values ofDS . Note that the limit
of v(k) for k→` changes sign atDS50.90. The other parameter
areF51, G51, DE52, kS51, kE510, e51, CE

eq52, andCS
eq

510.
4-8



th
s
p
fo
a
ity
m
e

io
ig
a
i

-

a
c

ica
ce
ie
g
te
t
id
w

lve
c-
er
to

cts
a

ar

in

to

n

of
lec-
he

ce
ial
ta-
o
rom
es
lly

ili-
of

solu-
he
d.
c-
t of
s a

for
for
e,
tion

n-

rs

POROUS SILICON FORMATION AND ELECTROPOLISHING PHYSICAL REVIEW E64 031604
Sec. III. This model has more than one field determining
interface motion, includes a change of valence in the dis
lution reaction, has nonlinear law of mass-action-ty
boundary condition, and includes a background reservoir
the reactants. The transport in both, the semiconductor
the electrolyte is diffusive. We performed a linear stabil
analysis of a flat interface for three limiting cases of a si
plified model and found two mechanisms that can caus
stabilization of the interface at high current densities.

First, a change of valence of the dissolution react
with current density can stabilize the interface. The s
of the dispersion relation flips when the change of the v
ence with current density is large enough, namely,
i S
0
'(0)@d ln n(i)/di#ui

S
0
'(0).1. This is true in general, indepen

dent of the transport mechanisms in the semiconductor
electrolyte, the number of reactants and reaction produ
and the type of boundary conditions. For electrochem
etching of silicon in hydrofluoric acid the change of valen
at the transition from pore formation at low current densit
to electropolishing at high current densities is large enou
The stability of the interface at high current densities, af
the valence settled at the electropolishing value, canno
explained with this mechanism. However, there an ox
layer is formed that has to be dissolved chemically. At lo
current densities, when pores are formed, silicon is disso
directly. This oxide layer reduces the diffusivity in the ele
trolyte considerably, leading to a stabilization of the int
face. Our model shows, that an interface propagating in
much more diffusive medium is stable~given that the reac-
tants are the rate limiting species, not the reaction produ!.

A second mechanism that at least partially stabilizes
interface are nonlinear law of mass-action-type bound
conditions. While the sign of the dispersion relationv(k) at
small k is determined by the ratio of diffusion lengths
semiconductor and electrolyte, the value at highk as a func-

FIG. 7. Dispersion relation in case of finite lifetime in semico
ductor and electrolyte for different values ofCS

eq, i.e., different
current densities. Note thatv(k) for k!1 remains positive. The
other parameters areF51, G51, DE52, DS51, kS51, kE

510, e51, andCE
eq52.
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tion of the current density can change sign from positive
negative. The sign ofv(k) for small k is determined by the
ratio of diffusion lengths. The side with the larger diffusio
length 1/k, i.e., the larger lifetimet, determines the stability
of long wavelength perturbations. If the diffusion length
the semiconductor is much longer than the one of the e
trolyte, the interface is unstable for long wavelengths. If t
diffusion length in the electrolyte is much larger,v(k) is
negative for smallk.

Our analysis shows, that a continuum model of surfa
growth, i.e., a moving boundary value problem for part
differential equations, can have a transition from linear s
bility to instability with increasing current density. The tw
mechanisms discussed here are particularly interesting f
a theoretical point of view in that the effects of nonlineariti
in the model equations can still be handled analytica
through a linear stability analysis.

It is questionable whether the transition from porous s
con formation to electropolishing can be described by one
the discussed mechanisms alone. The valence of the dis
tion reaction of silicon does change in this transition. But t
implementation in the model of Sec. III A is oversimplifie
A more realistic model would include two alternative rea
tion pathways for the species at the interface in the spiri
Eq. ~14!. The analysis in this paper should be regarded a
stepping stone for the development of such models.
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FIG. 8. The growth velocity of the flat interface~dashed line!
and the limiting value ofv(k) for k→` ~dotted line! are plotted
againstCS

eq. The growth velocity andv(`) change sign atCS
eq

50.5. At CS
eq58.58 onlyv(`) changes sign. The other paramete

are the same as in Fig. 7.
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